Data Structures
Augustin Cosse.

¢
J

NYU

Spring 2021

April 27, 2021

Maps

A map is an abstract data type designed to efficiently store
and retrieve values based on a uniquely identifying search key

Specifically, a map stores key value pairs (k,v) which we call
entries where k is a key and v is the corresponding value

Keys are required to be unique so that the mapping is defined
by the association of keys to values.

Map are also known as associative arrays because the entry's
key serves somewhat like an index into the map

Unlike in arrays, however, keys do not need to be numeric and
do not need to directly designate a position within the
structure

Maps

e Common applications of maps include:

e A university's information system relies on some form of
student ID as a key that can be mapped to that student’s
associated record

e The domain name system (DNS) maps a host name (e.g.
www.wiley.com) to an internet protocole (IP) address (e.g.
208.215.179.146)

e A social media site typically relies on a (nonnumeric) username
as a key that can be efficiently mapped to a particular user’s
associated information

Maps

e Since a map stores a collection of object, it should be viewed
as a collection of key-value pairs

e As an ADT, a map M supports the following methods (Part I)

size() returns the number of entries in M
isEmpty() Returns a boolean indicating whether M is empty
get(k) Returns the value v associated to to key k
put(k, v) If M does not have an entry with key equal to &
then add entry (k,v) to M and return null
else replace with v the existing value of the entry
with key &k and return the old value
remove(k) removes from M the entry with key equal to k
keySet() Returns an iterable collection containing
all keys stored in M

Maps

e As an ADT, a map M supports the following methods (Part
1]
values() Returns an iterable collection containing all
the values of entries stored in M (with repetition if
multiple keys map to the same value)
entrySet() Returns an iterable collection containing
all the key-value entries in M

e Notice that each of the operations get(k), put(k, v) and
remove(k) returns the existing value associated to key k if the
map has such an entry and returns null otherwise. This can
introduce ambiguity in maps that allow null as a natural entry

Maps

e To resolve that ambiguity, some of the implementation of the
java.util.Map interface explicitly forbid use of a null value
(and null keys).

e When a null entry is allowed, it is also often possible to
resolve the ambiguity by relying on the method
containsKey(k) that is defined in the interface.

}
}
}
}
}
}

o L e L o

N D

— e

N N N N N e N
—_— ===

e e S e

{
{
{
{
{
{

o —
3 —

3 3 3 3 3 3 3 3 = <4 -~ =
m..unnnnCBnEA.AEnncﬂm\)ﬂ:B
= Q-
ko =~
R =

T o~ o~~~ -~ N
TR0 R, 28 83T

»»»»» Do o o L g @
mp57282(((EVV(VpSSE
Ble s s o888 NOOE O E =

2 P2 2 2 p O OO Q >
MEuuuuugggsmmngtea

woooaao [T gw gxX >

Maps

The java Map interface

e The formal definition of the java Map interface can be found
below. Note that it relies on generics to store the key-value
pair < K,V >.

public interface Map<K, V>{
int size();
boolean isEmpty();
V get (K key);
V put (K key, V value);

V remove (K key);

Iterable<K> keySet();

Iterable<V> values();
Iterable<Entry<K, V entrySet () ;

Application: counting word frequencies

e As an application of maps, we consider the problem of
counting the number of occurences of words in a document

e This is a standard task when performing a statistical analysis
of a document, for example when categorizing an email or
news article

Application: counting word frequencies

e We begin with an empty map and start mapping the words to
their frequencies. We scan through the the input considering
adjacent characters to be words

public class WordCount {
public static void main(String args) {
Map<String,Integer> freq = new ChainHashMap<>();

Scanner doc

new Scanner(System.in).useDelimiter("[a-zA-Z]+");
while (doc.hasNext()) {

String word = doc.next().toLowerCase();
Integer count = freq.get(word);
if (count null)
count 0;
freq.put(word, 1 + count); }

Application: counting word frequencies

e After processing the entire input, we loop through the
entrySet () of the map to determine which word has the
most occurences

public class WordCount {
public static void main(String args) {

int maxCount = O;
String maxWord = "no word";

for (Entry<String,Integer> ent : freq.entrySet())

if (ent.getValue() > maxCount) {
maxWord = ent.getKey();
maxCount ent.getValue();
}
+r

Abstract Map base class
e We will consider multiple possible implementations of the map

ADT using a variety of data structures. As before, we will rely

on a combination of abstract and concrete classes

Kinterface>>

Map

(Section 10.1.1)

A

AbstractMap
(Section 10.1.3)

1

< interface>>
SortedMap
(Section 10.3)

A

i

AbstractSortedMap
(Section 10.3)

Unsorted TableMap
(Section 10.1.4)

AbstractHashMap
(Section 10.2.4)

SortedTableMap
(Section 10.3.1)

TreeMap
(Chapter 11)

1

ChainHashMap
(Section 10.2.4)

ProbeHashMap
(Section 10.2.4)

(additional subclasses)

Abstract Map base class

e We begin by designing an AbstractMap base class from
which we will derive all the other map implementations

public abstract class AbstractMap<K,V> implements Map<K,V> {
public boolean isEmpty() { return size() 0; }

protected static class MapEntry<K,V> implements Entry<K,V> {
private K k;
private V v;
public MapEntry(K key, V value) {
k key;
v = value;}

public K getKey() { return k; }
public V getValue() { return v; }

protected void setKey(K key) { k = key; }
protected V setValue(V value) {

V old v;

v value;

return old;}}

Abstract Map base class

e We create an iterable instance as the output returned by the
method

public abstract class AbstractMap<K,V> implements Map<K,V> {

private class KeyIterator implements Iterator<K> {
private Iterator<Entry<K,V>> entries = entrySet().iterator();
public boolean hasNext() { return entries.hasNext(); }
public K next() { return entries.next().getKey(); }
public void remove() {
throw new UnsupportedOperationException(); }
}

private class KeyIterable implements Iterable<K> {
public Iterator<K> iterator() { return new KeyIterator(); }
}

public Iterable<K> keySet() { return new KeyIterable(); }

Abstract Map base class

e We create an iterable instance as the output returned by the
method

public abstract class AbstractMap<K,V> implements Map<K,V> {

private class Valuelterator implements Iterator<V> {
private Iterator<Entry<K,V>> entries = entrySet().iterator();
public boolean hasNext() { return entries.hasNext(); }
public V next() { return entries.next().getValue(); }
public void remove()
{ throw new UnsupportedOperationException(); }
}
private class ValueIterable implements Iterable<V> {
public Iterator<V> iterator() { return new ValueIterator(); }
}
public Iterable<V> values() { return new ValueIterable(); }

A first simple Unsorted Map

o We will start with a simple concrete implementation of the
map ADT that relies on storing key-value pairs in arbitrary
order within a Java ArrayList

e Within this first implementation, each of the get (k), put (k,
v) and remove (k) methods will require an initial scan of the
array to determine whether an entry with key equal to k exists.

A first simple Unsorted Map

e We will therefore implement a public utility findIndex (key)
that returns the index at which such an entry is found or —1 if
no entry is found

public class UnsortedTableMap<K,V
extends AbstractMap<K,V> {
private ArrayList<MapEntry<K,V>> table
new ArrayList<>();
public UnsortedTableMap() { }

private int findIndex(K key) {
int n = table.size();
for (int j=0; j < m; j++)
if (table.get(j).getKey().equals(key))
return j;
return -1;

A first simple Unsorted Map

e To remove an entry from the ArrayList, since the list is
unsorted, instead of using the remove method that would
result in shifting all the elements to shift the empty entry, we
prefer to replace the removed entry with the last entry in the
list.

public V remove(K key) {
int j = findIndex(key) ;
int n size();
if (j 1) return null;
V answer = table.get(j).getValue();
if (j n-1)

table.set(j, table.get(n-1));
table.remove(n-1);
return answer;

A first simple Unsorted Map

public int size() { return table.size(); }
public V get(K key) {
int j = findIndex(key) ;
if (j 1) return null;
return table.get(j).getValue();
}

public V put(K key, V value) {
int j = findIndex(key);
if (j DA
table.add(new MapEntry<>(key, value));
return null;
} else
return table.get(j).setValue(value); }

A first simple Unsorted Map

e We finally provide support for the iterator over <key,value>
pairs (Part 1)

private class EntryIlterator
implements Iterator<Entry<K,V

private int j=0;
public boolean hasNext() { return j < table.size(); }
public Entry<K,V> next() {

if (3 table.size())

throw new NoSuchElementException();

return table.get(j++);
}
public void remove()
{ throw new UnsupportedOperationException(); }

A first simple Unsorted Map

e We finally provide support for the iterator over <key,value>
pairs (Part I1)

private class Entrylterable
implements Iterable<Entry<K,V
public Iterator<Entry<K,V>> iterator()
{ return new EntryIterator(); }

public Iterable<Entry<K,V>> entrySet()
{ return new EntryIterable(); }

}

A first simple Unsorted Map

e One of the most efficient data structures for storing a map
one that is widely used in practice is the Hash table

e In order to understand the notion of hash table, let us
consider a map with integer keys and represent it through the
lookup table below

10

e In this representation, we store the value associated with key
k at index k of the table. The basic map operations get, put
and remove can then be implemented in O(1) worst case time

A first simple Unsorted Map

e There are two challenges in extending this framework to the
more general setting of a map.

e First we will want the array to have a size equal to the size of
the map

e Second, keys in general maps are not required to be integers.

e The novel concept in a Hash table is the use of a Hash
function to map general keys to corresponding indices in a
table.

e Ideally keys should be mapped (by the hash function) to the
whole interval 0,..., N — 1. However it might happen that
one or more keys get mapped to the same integer

A first simple Unsorted Map

e We will conceptualize our table as a Bucket array where each
bucket might manage a collection of entries that are sent to
the corresponding index by the Hash function h.

e Given this idea, we can then use h(k) as an index to navigate
in our Bucket array. That is we store the map entry (k,v) in
the bucket BA[h[k]|

A first simple Unsorted Map

e if two or more keys share the same hash value, we say that a
collision has occured (we will discuss how to handle collisions
later)

e We say that a hash function is good if it maps the keys in our
map so as to sufficiently minimize collisions

e In practice, we will also want the hash function to be fast and
easy to compute

A first simple Unsorted Map

e It is common to view a hash function h(k) as consisting of
two parts:

e A hash code that maps a key k to an integer

e And a compression function that maps the output to the hash
code to the range of indices [0,N-1] of the bucket array.

Arbitrary Objects

hash code

A first simple Unsorted Map

e The advantage of this decomposition is that the Hash code is
independent of the size of the hash table size

e This allows the development of a general hash code that can
be for a hash table of any size

Arbitrary Objects

hash code

- © o6 o o o o o o o o>

-2 -1 0 1 2

compression function

- @

°
2

S e

N-1

Hash codes (1)

e The first action that a hash function performs is to take an
arbitrary key k in the map and compute an integer that is
called the hash code for &

e We would like hash codes to avoid collisions as much as
possible.

e Note that for any data type X that is represented using at
most as many bits as our hashcode, we can simply take as our
hash code, the integer associated to the bits

e In particular, java maintains 32 bits hash code and for any key
of type char, int, short or byte, we can get a first hash code
by casting the variables to int.

Hash codes (lI)

e In a similar vein, for float, we can convert x to integer using
Float.floatToIntBits(x) and use the resulting value as
our hash code.

e For a type representation whose bit representation is larger
than the hash code (such as long and double for example),
such a scheme is not directly applicable. One solution can
then be to use the high order (i.e. most significant or
leftmost) 32 bits or conversely the low-order (rightmost) 32
bits

e Although simple in practice, such an approach might
introduce a lot of collisions

Hash codes (III)

e A better approach would be to combine the low order and
high order 32 bits.

e One approach to implement this idea could be to sum up the
two 32 bits, ignoring overflow (whatever cannot be stored), or
take the exclusive OR of the two components.

e That idea can be extended to any object that can be viewed
as an n-tuple of 32 bits integers, such as (x1,x2,...,2,). We
can then obtain a 32 bits representation by combining the
entries of the tuple as for example 7' z; or
ToDPx1D...Tp—-1

Polynomial Hash codes

e The summation and exclusive-or hash code are not good
choices for character strings or other variables length objects
that can be viewed of tuples (x1,z2,...,x,) where the
ordering of the x; matters

e As an illustration of this, consider a 16 bits hash code for a
character string s that sums the unicode values of the
characters in s

e Such a hash code would produce a lot of unwanted collisions
for common strings such as stop, tops, pots, ..

e A better hash code should somewhow take into consideration
the positions of the z;'s

Polynomial Hash codes

e An alternative hash code that takes into account the ordering
can be obtained by considering the polynomial

-1 -2
zoa" +xa" ..+ xp_0a+ Tp_q

e Mathematically, this is simply a polynomial in a that takes as
the components (xg, x1,...,2,—1) of x as its coefficients.

e Intuitively a polynomial hash code uses multiplication by
different powers as a way to spread out the influence of each
component across the code.

Polynomial Hash codes

e Of course on a typical computer, evaluating the polynomial
will be done using a finite representation and the value will
periodically overflow.

e However, since we are interested in spreading of the object x
with respect to the other keys, we can ignore such overflows

e We can also choose a so that it has non zero low order bits
that will preserve some of the information content (including
in the case of overflow)

e Experimental studies suggest that taking a = 33, 37,39 and
41 is usually a good choice (produced few collisions) when
used with character strings that are English words

Cyclic ShiftHash codes

e A variant of the polynomial Hash code replaces multiplication
by a with a cyclic shift of a partial sum by a certain number
of bits

e For example, a 5 bits cycle shift of the 32 bits value
00111101100101101010100010101000

is achieved by taking the leftmost right bits and placing them
on the rightmost side of the representation

10110010110101010001010100000111

e While this operation has little meaning in terms of arithmetic,
it accomplishes the goal of varying the bits of the calculation

Cyclic ShiftHash codes

e An implementation of a cyclic-shift hash code computation for
a character string in java can be obtained as below

static int hashCode(String s){
int h=0;
for(int i=0; i<s.length(); i++){
h = (h<<B) | (>>>27);

h+= (int) s.charAt(i);
}
}

Cyclic ShiftHash codes

e As with the traditional polynomial hash code, fine tuning is
required when using the a cyclic shift and it is advised to
carefully choose the amount of shift for each new character

e The table below is generated from a list of over 230 English

words
Collisions
Shift Total | Max
0| 234735 | 623
1| 165076 43
2| 38471 13
3 7174 5
4 1379 3
5 190 3
6 502 2

Hash codes in Java

e The notion of Hash codes is an integral part of the java
language. As an example, the Object class which serves as an
ancestor of all object types includes a default hashCode ()
method that returns a 32 bits integer of type int

e We must be careful when relying on the default version of
HashCode. For Hashing shemes to be reliable, it is imperative
that two objects that are viewed as equal to each other have
the same hash code.

e This is important because if an entry is inserted into a map
and a later search is performed on a key that is considered
equivalent to that entry's key, the map must recognize this as
a match

Hash codes in Java

e If a class defines an equivalence through the equals method,
then that class should also provide a consistent
implementation of the hashCode method, such that if
x.equals(y), then x.hashCode() == y.hashCode().

e As an example, Java's String class defines the equals method
so that two instances are equivalent if they have precisely the
same sequence of characters. The class also overrides the
hashCode method to provide consistent behavior

Hash codes in Java

e As an example of how to implement a hashCode for a user
defined class, we implement such a hashCode for the
SinglyLinked List class below

e A robust hasCode can be computed on LinkedLists by taking
the exclusive or of its elements hashCode and then applying a
5 bits cyclic shift

public int hashCode (){
int h=0;
for (Node walk = head; walk!=null; walk = walk.getNext)

h™= walk.getElement () .hashCode() ;
h = (b<<B) | (B>>>27);

Compression functions

e The hash code for a key k will typically not be suitable for
immediate use with a bucket array because the value returned
by the hash code may be negative or may simply exceed the
capacity of the array

e Once we have determined the hash code, there is still the
issue of mapping this integer in the range [0,N-1]

e This computation known as compression function, is the
second action performed as part of the overall hash function

e Just as for the hash function, a good compression function is
one that minimizes the number of collisions

Compression functions

e A simple compression function is the division method, which
maps an integer ¢ to ¢ mod N where N is the size of the
bucket array

e Additionally, if we take IV to be a prime number, this will
often reduce the number of collision (the result will tend to
srepad out more)

e As an example if we consider keys with associated hash codes
given by {200,205, 210, 215, 220, ...,600} that we want to
insert into a bucket array of size 100, each hash code will
appear at least 3 times. If we use a bucket of size 101 instead,
there will be no collisions

e Choosing N to be a prime number is often not enough to
avoid collisions though.

The MAD method

e A more sophisticated compression function, which helps
eliminate repeated patterns in a set of integer keys is the
Multiply-Add-and-Divide (or MAD) method

e The method maps an integer i to [(ai +b) mod p] mod N
where N is the size of the bucket array, p is a prime number
larger than N and a and b are integers chosen at random
from the interval [0,p — 1] with a > 0.

e This compression function is chosen in order to eliminate
repeated patterns in the set of hash codes and and get us
closer to having a “good” hash function (that is one such that
the probability that any two keys collide is 1/N).

e This good behavior would be the same as if the keys were
thrown in the bucket uniformly at random

Collision handling schemes

e As we saw, the main idea of a hash table is to take a bucket
array BA and a hash function i and use them to implement a
map by storing each entry (k,v) in the bucket BA[h(k)]

e The idea is challenged, however, when we have multiple keys
such that h(k1) = h(k2).

e The existence of such collisions prevents us from being able to
simply insert new entries directly in the bucket. Moreover, it
also complicates the procedure for performing insertion,
search and deletion operations.

Separate chaining

e A simple and efficient way for dealing with collisions is to have
each bucket BA[j| store its own secondary container, holding
all entries (k,v) such that h(k) =j

e A natural choice for the container is a small map instance
implemented using an unordered list, as shown below. This
collision resolution rule is known as separate chaining and is
illustrated below

0 89101112

5 7
al | |r| |r| L Lol T4]

()
(12)
()

Separate chaining

e In the worst case, operations on an individual bucket take
time proportional to the size of the bucket

e Assuming we use a good hash function to index the n entries
of our map in a bucket array of capacity N, the expected size
of a bucket is n/N

e If given a good hash function, the core map operations should
run in O(|n/N]). The ratio A = n/N is called the load factor
of the hash table

e if the load factor is bounded by a constant, we thus known
that the core operations on the hash table will run in O(1)
expected time.

Open Addressing

e The separate chaining rule has many nice properties such as
simple implementations of map operations. But it
nevertheless has one disadvantage : it requires the use of an
auxilliary data structure to hold entries with colliding keys

e An alternative known as open addressing. This alternative
however requires a bit more complexity to properly handle
collisions

e Open addressing requires that the load factor is always at
most 1 and that entries are stored in the cells of the bucket
array itself

Open Addressing

e A simple method for collision handling with open addressing is
linear probing

e With this approach, if we try to insert an entry (k,v) into a
bucket A[j] that is already occupied, where j = h(k) then we
next try A[(j +1) mod N]. If A[(j +1) mod N] is also
occupied, then we try A[(j +2) mod N] and so on, until we
find an empty spot

e Of course, this collision resolution strategy requires that we
change the implementation of the get, put or remove
operations

Must probe 4 times
New element with before finding empty slot

key = 15 to be inserted\

0O 1 2 3 4 9 10
13 265 37|16 21

SVYA YA YA
5 6 7 8

Open Addressing

e Of course, this collision resolution strategy requires that we
change the implementation of the get, put or remove
operations

e In particular, to attempt to locate an entry with key equal to
k, we must examine consecutive slots, starting from A[h(k)],
until we either find an entry with an equal key,
or an empty bucket.

Must probe 4 times
New element with before finding empty slot

key = 15 to be inserted\

0O 1 2 3 4 9 10
13 265 37|16 21

ISVYA YA VYA
5 6 7 8

Open Addressing

e To implement a deletion, we cannot simply remove a found
entry from its slot in the array

e For example, after the insertion of key 15 in the array below,
if the entry with key 37 were trivially deleted, a subsequent
search for 15 would fail because that search would start by
probing at index 4 then index 5 then index 6 at which an
empty cell is found

Must probe 4 times

New element with before finding empty slot
key = 15 to be inserted_\ f_%
ISVYAVYAVA
0 1 4 5 6 7 8 9 10

13 26| 5 [37]16 21

Open Addressing

e A typical way to get around this difficulty is to replace a
deleted entry with a “defunct” sentinel object. With this
sepcial marker possibly occupying spaces in our hash table, we
modify our search algorithm so that the search for a key k£ will
skip over the cells containing the defunct sentinel and
continue probing until reaching the desired entry or an empty
bucket (ore returning back to where we started from)

e Additionaly, our algorithm for put should remember a defunct
location encountered during the search for k, since this is a
valid place to put a new entry (k,v), if not existing exntry is
found beyond it.

Must probe 4 times
New element with before finding empty slot

key = 15 to be inscrted\

0O 1 2 3 4 9 10
13 265 37|16 21

SVYA YA YA
5 6 7 8

Open Addressing

e Although use of open addressing can save space, linear probing
suffers from an additional disadvantage: it tends to cluster the
entries of a map into contiguous runs, which may even overlap

e Contiguous runs of occupied hash cells cause searches to slow
down considerably

Must probe 4 times
New element with before finding empty slot

key = 15 to be inserted_\

0O 1 2 3 4 9 10
13 265 37|16 21

'SVYA YA VYA
5 6 7 8

Open Addressing

Another open addressing strategy known as quadratic probing
iteratively tries the buckets A[h(k) + f(i) mod N] for
i=0,1,2,... where f(i) = i until finding an empty bucket.

As with linear probing, the quadratic probing strategy
complicates the removal operation but it does avoid the kind
of clustering patterns that occur with linear probing.

Nevertheless, it creates it own kind of clustering known as
secondary clustering in which the set of filled array cells still
has a non uniform pattern, even if we assume that the original
hash codes are distributed uniformly

When N is a prime and the array is less than half full, the
quadratic probing strategy is guaranteed to find an empty
slot. However this guarantee does not hold anymore when
either of this assumption falls.

Open Addressing

e A third open addressing strategy that does not cause the
clustering of the kind produced by linear probing or the kind
produced by quadratic probing is the double hashing strategy.

e In this strategy, we choose a secondary hash function h’, and
if h maps some key k to a bucket A[h(k)] that is already
occupied, then we iteratively try the buckets A[h(k) + (i)
mod N]| fori=1,2,3,... where f(i) =1i- h'(k).

e The secondary hash function is not allowed to evaluate to 0.
A common choice for this function is 4'(k) = ¢ — (k mod q)
for some prime ¢ < N. N should also be a prime

e Finally, a last approach to avoid clustering can be to try
buckets A[(h(k) + f(i)) mod N] with f(i) based on a
pseudo random number generator

