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This note was written as part of the series of lectures on partial differential
equations (MATH-UA 9263) delivered at NYU Paris in 2022. The version is
temporary. Please direct any comments or questions to acosse@nyu.edu.

The Cauchy problem

In this lecture, we will study the Cauchy problem

{
ut −Duxx = 0, in R× (0,∞)
u(x, 0) = g(x) in R

We start by proving existence of a solution. We consider the candidate solution given
by

u(x, t) =

∫
R
Φ(x− y, t)g(y) dy

where Φ(x − y) is the fundamental solution. Such a candidate solution is motivated
by the fact that, as we previously saw, limt→0+ Φ(x− y, t) = δ(x− y) and

g(x) =

∫
R
δ(x− y)g(y) dy (1)

From those we thus have

lim
t→0+

u(x, t) = lim
t→0+

∫
R
Φ(x− y, t)g(y) dy = g(x)

Moreover, since Φ(x, t) represents the fundamental solution, hence satisfies∫
R
(∂tΦ(x− y, t)−D∆Φ(x− y, t))g(y) dy = 0. (2)
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we can expect our candidate solution u to verify

∂tu−D∆u = 0. (3)

Provided that we can move the differential operator inside the integral, it therefore
seems like u provides a valid solution.

The following theorem shows that our reasoning is perfectly valid when the Cauchy
data g(x) satisfies an exponential growth condition.

Theorem 1 (Existence of a solution for the Cauchy problem). Assume that
there exist positive numbers a and c such that

|g(x)| ≤ ceax
2

, for all x ∈ R (4)

Let u be given by

u(x, t) =

∫
R
Φ(x− y, t)g(y) dy =

1√
4πDt

∫
R
e−

(x−y)2

4Dt g(y) dy (5)

and T < 1
4aD . Then, the following properties hold

(i) There are positive numbers C and A such that

|u(x, t)| ≤ CeAx2

, for all (x, t) ∈ R× (0, T ] (6)

(ii) u ∈ C∞(R× (0, T ]) and in the strip R× (0, T ]

ut −Duxx = 0 (7)

(iii) Let (x, t)→ (x0, 0
+). If g is continuous at x0 then u(x, t)→ g(x0)

Proof. (i) From the assumption T < 1
4aD (i.e. t < 1

4aD , for all t ≤ T ), we can find
a positive ε such that 1

4DT − a > ε
4DT and hence 1

4Dt − a > ε
4Dt for all t (ϵ is

thus independent of t). Recall that our candidate solution is defined as

u(x, t) =

∫
R
Φ(x− y, t)g(y) dy =

1√
4πDt

∫
R
e−

(x−y)2

4Dt g(y) dy

Using our assumption on the Cauchy data, we can bound the modulus of this
candidate solution as

|u(x, t)| ≤ c√
4πDt

∫
R
e−

(x−y)2

4Dt eay
2

dy =
c√

4πDt

∫
R
e−

z2

4Dt ea(x−z)2 dz (8)

To reach a bound of the form |u(x, t)| ≤ ceax
2

we would like to

1) Move a term of the form eax
2

outside the integral and
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2) Reduce the remaining integral to something we can compute (or at least
bound). In this case, the most natural approach seems to be to turn the
integrand into a Gaussian pdf which is then easy to integrate on R (given
that the pdf has total weight one).

Note that

− z2

4Dt
+ a(x− z)2 = −

√ 1

4Dt
− az +

a√
1

4Dt − a
x

2

+

(
a+

a2(
1

4Dt − a
))x2

Substituting this in (8), we get

|u(x, t)| ≤ c√
4πDt

e

(
a+ a2

ε

)
x2
∫
R
e
−
(√

1
4Dt−az+ a√

1
4Dt

−a
x

)2

dz

We then use our time constraint, 1
4Dt − a > ε

4Dt , which gives√
1

4Dt
− a

1√
ε
>

1√
4Dt

and hence

|u(x, t)| ≤
√

1

4Dt
− a

c√
ε
e

(
a+ a2

ε

)
x2
∫
R
e
−
(√

1
4Dt−az+ a√

1
4Dt

−a

)2

dz

Applying the change of variables z ←
√

1
4Dt − az we finally get

|u(x, t)| ≤ c√
ε
e

(
a+ a2

ε

)
x2
∫
R
e−(z+βx)2 dz

≤ c
√
2π√
ε

e

(
a+ a2

ε

)
x2

which concludes the proof for (i)

(ii) Again, starting from the definition of our candidate solution

u(x, t) =

∫
R
Φ(x− y, t)g(y) dy =

1√
4πDt

∫
R
e−

(x−y)2

4Dt g(y) dy

We want to show that u ∈ C∞(R × (0, T ]) (meaning u has derivatives of all
orders) and satisfies ut − Duxx = 0 in the strip R × (0, T ]. To show that the
derivatives are continuous, we need to move the derivatives inside the integral.
We will rely on the following theorem

Theorem 2. Suppose f : X × [a, b] → C (−∞ < a < b < ∞) and f(·, t) :
X → C is integrable for each t ∈ [a, b]. Let F (t) =

∫
X
f(x, t)dµ(x). Suppose ∂f

∂t

exist and there is a g ∈ L1(µ)1 such that
∣∣∣∂f∂t (x, t)∣∣∣ ≤ g(x) for all x, t. Then f

is differentiable and F ′(t) =
∫
X

∂f
∂t (x, t)dµ(x)

1g ∈ L1(µ) means that g satisfies
∫
R |g|dµ < ∞
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From Theorem 2 above, we thus need to bound the derivatives of all orders in t
and x (∂h

t ∂
k
xΦ(x − y, t)g(y)) by a function whose modulus is integrable. Those

derivatives read as sums of terms of the form

t−r|x− y|se−
(x−y)2

4Dt Aeay
2

up to multiplicative constants

Note that for such terms, we have

t−r|x− y|se−
(x−y)2

4Dt Aeay
2

= t−r|x− y|se− x2

4Dt−
y2

4Dt+
2xy
4DtAeay

2

Using (x − by)2 = x2 + b2y − 2bxy ≥ 0 which gives 2xy ≤ 1
bx

2 + by2, we can
further write

t−r|x− y|se− x2

4Dt e−
y2

4Dt e
2xy
4DtAeay

2

(9)

≤ t−r
0 (R+ |y|)s e−x2( 1

4Dt−
1
b )Ae−(

1
4Dt−a−b)y2

(10)

Recall that from our time constraint, we have 1
4Dt > a. Moreover, using |a+b| ≤

|a|+ |b| ≤ 2max (|a|, |b|) and hence |a+ b|n ≤ 2n|a|n+2n|b|n, and taking b small
enough, we have

(10) ≤ t−r
0 Rs(2s−1)e−x2( 1

4Dt−
1
b )Ae−(

1
4Dt−a−b)y2

+ t−r
0 2s−1e−x2( 1

4Dt−
1
b )|y|se−(

1
4Dt−a−b)y2

with
(

1
4Dt − a− b

)
> 0. The first term is a Gaussian which is integrable on R.

To convince yourself that the second term can be bounded by a Gaussian as
well, note that

e|y| =

∞∑
k=0

|y|k

k!
≥ |y|

s

s!

hence ∫ ∞

−∞
|y|se−αy2

dy ≤ 2

∫ ∞

0

s! eye−αy2

dy

≤ 2

∫ ∞

0

s! e−α(y− 1
2α )2e

1
4α dy

which again is a Gaussian.

Since all the derivatives are bounded by non negative integrable functions, we
can move the differential operator inside the integral and connect (2) and (3).
I.e.

ut −∆u =

∫
R
[∂tΦ(x− y)−∆Φ(x− y)] d(y) dy = 0

This concludes the proof of (ii)

(iii) To conclude, we want to show that when g is continuous at x0, u(x, t)→ g(x0)
when t→ 0+. Note that this is equivalent to showing that for every ε > 0, there
exists a δ > 0 such that if |x − x0|, t < δ then |u(x0, t) − g(x0)| < ε. Since we
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assumed that g was continuous, we can write ∀ ε/2 ∃ δ s.t. |y − x0| < δ ⇒
|g(y) − g(x0)| < ε/2. Using this, we can express the difference u(x0, t) − g(x0)
as

u(x0, t)− g(x0) =

∫
|y−x0|<δ

Φ(x− y, t) [g(y)− g(x0)] dy

+

∫
|y−x0|>δ

Φ(x− y, t) [g(y)− g(x0)] dy

≤ ε

2
+

∫
|y−x0|>δ

Φ(x− y, t) [g(y)− g(x0)] dy

Where we used the fact that Φ is non-negative. From our assumption on the
Cauchy data, on the other hand, we have

|g(y)− g(x0)| ≤ Aeay
2

+Aeax
2
0

hence∫
|y−x0|>δ

Φ(x− y, t) [g(y)− g(x0)] dy ≤
∫
|y−x0|>δ

Φ(x− y, t)
(
Aeax

2
0 +Aeay

2
)

dy

≤ Aeax
2
0

∫
|y−x0|>δ

Φ(x− y, t) dy

+A

∫
|y−x0|>δ

Φ(x− y, t)eay
2

dy

For both of these terms, we can apply the following reasoning (we do it for the
first term, the second one can be treated in a similar manner)∫

|y−x0|>δ

1√
4πDt

e−
y2

4Dt dy ≤
∫
|y
√
4πDt−x0|>δ

e−y2

dy (11)

≤
∫
|y
√
4πDt|>δ

e
−
(
y−
(
− x0√

4πDt

))2

dy (12)

≤
∫
|y|> δ√

4πDt

e−y2(1− 1
b )e−

x2
0

4πDt e
bx2

0√
4πDt dy (13)

In (11) we use the change of variable y ← y/
√
4Dt. In (11), we use the change

of variable y ← y − x0√
4πDt

. In the last line we again use 2xy ≤ 1
by

2 + bx2 and

take b sufficiently small to satisfy 1− 1
b > 0.

Taking the limit t → 0+ in (13) and noting that e
− a

t +
b√
t = e

− a√
t

(
1√

t− a
b

)
gives

the conclusion.

5



Non homogeneous problem and Duhamel’s principle

We now discuss how to solve the general (non-homogeneous) Cauchy problem{
ut −Duxx = f(x, t) in R× (0, T ]
u(x, 0) = g(x) in R (14)

We will start by considering the problem{
ut −Duxx = f(x, t) in R× (0, T )
u(x, 0) = 0

(15)

To solve this problem, we will rely on the following two steps approach known as
Duhamel’s principle:

1) Construct a family of solutions of homogeneous Cauchy problems with variable
initial time s, 0 ≤ s ≤ t and initial data f(x, s)

2) Integrate the above family with respect to s over (0, t) to get the solution to (15).

As an illustration of the method, consider the family of homogeneous Cauchy problems{
wt −Dwxx = 0 x ∈ R, t > s
w(x, s) = f(x, s) x ∈ R (16)

(here s is thus viewed as a parameter). Recall that Φ(x, t) is used to denote the
fundamental solution of the heat equation with initial data δ(x) (i.e. Φ(x, 0) = δ(x))
then Φ(x, t− s) is the fundamental solution that satisfies the Cauchy problem{

ut −D∆u = 0
u(x, s) = δ(x)

(17)

In particular for general Cauchy data of the form u(x, s) = f(x, s) we have

w(x, t, s) =

∫
R
Φ(x− y, t− s)f(y, s) dy (18)

Integrating over (0, t), we get

v(x, t) =

∫ t

0

w(x, t, s) ds =

∫ t

0

∫
R
Φ(x− y, t− s)f(y, s) dy ds (19)

We want to show that this candidate solution satisfies (15). Obviously v(x, t) satisfies
v(x, 0) = 0. To prove that it also satisfies the non-homogeneous heat equation with
f(x, t) as the source term, we first compute the time derivative ∂tv. Note that this
derivative arises from two contributions (as t and s are treated as distinct parameters):
a direct derivative with respect to time (that can be moved inside the integral) and
the derivative with respect to time of the integral taken at s = t. We thus have

∂t

(∫ t

0

w(x, t, s) ds

)
=

∫ t

0

∂tw(x, t, s) ds+

(
∂t

∫ t

0

w(x, t′, s) ds

)∣∣∣∣
t′=t
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Plugging this into the heat equation

vt −Dvxx = w(x, t; t) +

∫ t

0

(∂tw(x, t, s) ds−Dwxx(x, t, s)) ds

= f(x, t)

v(x, t) is thus a valid solution of (15).

To obtain the solution for the general Cauchy problem, we use superposition. Combin-
ing the solution of the Cauchy problem for the homogeneous equation and the solution
of the Cauchy problem with a forcing term f(x, t) (heterogeneous heat equation) but
homogeneous Cauchy data.

u(x, t) =

∫
R
Φ(x− y, t)g(y) dy +

∫ t

0

∫
R
Φ(x− y, t− s)f(y, s) dy ds (20)

Clearly this solution satisfies our initial conditions as we have u(x, t) → g(x0) as
(x, t) → (x0, 0). Moreover, note that when applying our differential operator to the
first term in (20), the result vanishes as Φ(x) satisfies the homogeneous heat equation.

Uniqueness

So far we have discussed existence of a solution for the Cauchy problem but we haven’t
proved uniqueness of the solution. Proving uniqueness is relatively straightforward
provided that we once again remain within the class of functions with growth at
infinity controlled by an exponential of the type CeAx2

for all t > 0 (such a class of
functions is known as the Tychonov class). The uniqueness of the Cauchy problem
can then be derived as a consequence of the following maximum principle

Theorem 3 (Global Maximum Principle). Suppose u ∈ C2,1(Rn × (0, T ]) ∩
C(Rn × [0, T ]) solves {

ut −D∆u on Rn × (0, T ]
u = g on Rn × {t = 0} (21)

and satisfies the growth estimates

|u(x, t)| ≤ Aea|x|
2

, (x ∈ Rn, 0 ≤ t ≤ T ) (22)

Moreover, assume t < T < 1
4aD for some constants A, a > 0 then

sup
Rn×[0,T ]

u = sup
Rn

g
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Proof. From the assumption on t, we have T < 1
4aD hence ∃ε > 0 such that 4a(T +

ε)D < 1. Let us fix y ∈ R, µ > 0. We consider the function v(x, t) defined as

v(x, t) = u(x, t)− µ

(T + ε− t)n/2Dn/2
e

|x−y|2
4(T+ε−t)D , (x ∈ Rn, t > 0)

Note that

∂

∂t

(
µ

(T + ε− t)n/2Dn/2
e

|x−y|2
4(T+ε−t)D

)
=

n

2

µ

(T + ε− t)n/2+1Dn/2
e

|x−y|2
4(T+ε−t)D +

µ

(T + ε− t)n/2
|x− y|2

4D(T + ε− t)2
e

|x−y|2
4D(T+ε−t)

Moreover

∂xi
=

µ

(T + ε− t)n/2Dn/2

−2(xi − yi)

4D(T + ε− t)
e

|x−y|2
4D(T+ε−t)

as well as

∂xixi
= − µ

(T + ε− t)n/2
2

4D(T + ε− t)
e

|x−y|2
4D(T+ε−t) +

µ

(T + ε− t)n/2
4(xi − yi)

2

16D2(T + ε− t)2
e

|x−y|2
4D(T+ε−t)

From this, we see that v(x, t) satisfies ∂tv − ∆v = 0. Let U = B(y, r) the ball of
radius r centered on y. Recall that from the weak maximum principle, we have

max
QT

v = max
∂QT

v = max
|x−y|=r∪{t=0}

v(x, t) (23)

Now on the {t = 0} part of the boundary we have

v(x, 0) = u(x, 0)− µ

(T + ε)n/2Dn/2
e

|x−y|2
4(T+ε)D (24)

≤ u(x, 0) = g(x) (25)

On the |x− y| = r part of the boundary, we have

v(x, t) = u(x, t)− µ

(T + ε− t)n/2Dn/2
e

r2

4(T+ε−t)D (26)

≤ Aea|x|
2

− µ

(T + ε− t)n/2Dn/2
e

r2

4(T+ε−t)D (27)

≤ Aea(|y|+r)2 − µ

(T + ε)n/2Dn/2
e

r2

4(T+ε)D (28)

In the last line, we use the fact that 1
xn e

1/x is a decreasing function of x. I.e,

d

dx

(
1

xn
e1/x

)
= − n

xn+1
e1/x +

1

xn

(
− 1

x2

)
e1/x

From the condition T < 1
4Da and 4a(T + ε) < 1, we can always find γ > 0 such that

1

4(T + ε)D
= a+ γ
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Substituting this in (28), we get

v(x, t) ≤ Aea(|y|+r)2 − µ (4(a+ γ))
n/2

e(a+γ)r2

≤ e(a+γ)r2
(
−µ(4(a+ γ))n/2 +Ae−γr2+2ar|y|+a|y|2

)
Such an expression in particular shows that we can always take r large enough so as
to satisfy

v(x, t) ≤ e(a+γ)r2
(
−µ(4(a+ γ))n/2 +Ae−γr2+2ar|y|+a|y|2

)
≤ sup

R
g

This implies

v(x, t) ≤ sup g on |x− y| = r (29)

Grouping (25) and (29), and substituting in (23), we finally get

max
QT

v ≤ sup
R

g(x) (30)

since y was arbitrary, we get

sup
Rn×[0,T ]

v(y, t) ≤ sup g

Finally taking µ→ 0 gives the conclusion

u(x, t) ≤ sup g
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