MATH-UA 9263 - Partial Differential Equations Recitation 9: Wave equation (part II)

Augustin Cosse

January 2022

Question 1 The chord of a guitar of length L is plucked at its middle point and then released. Write the mathematical model which governs the vibrations and solve it. Compute the energy $E(t)$.

Question 2 Solve the problem

$$
\begin{cases}u_{t t}-u_{x x}=0, & 0<x<1, t>0 \\ u(x, 0)=u_{t}(x, 0)=0 & 0 \leq x \leq 1 \\ u_{x}(0, t)=1, u(1, t)=0 & t \geq 0\end{cases}
$$

Question 3 Solve the problem

$$
\begin{cases}u_{t t}-u_{x x}=g(t) \sin x & 0<x<\pi, t>0 \\ u(x, 0)=u_{t}(x, 0)=0 & 0 \leq x \leq \pi \\ u(0, t)=u(\pi, t)=0 & t \geq 0\end{cases}
$$

Question 4 (Equipartition of energy) . Let $u=u(x, t)$ be the solution of the global Cauchy problem for the equation $u_{t t}-c u_{x x}=0$ with initial data $u(x, 0)=g(x), u_{t}(x, 0)=h(x)$. Assume that g and h are smooth functions with compact support contained in the interval (a, b). Show that there exists T such that, for $t \geq T$,

$$
E_{c i n}(t)=E_{p o t}(t)
$$

Question 5 Consider waves in a resistant medium which satisfies the following PDE

$$
\begin{array}{rl}
u_{t t}=c^{2} u_{x x}-r u_{t} & 0<x<\ell \\
u(0, t)=u(\ell, t)=0, & \forall t>0 \\
u(x, 0)=\phi(x) & 0<x<\ell \\
u_{t}(x, 0)=\psi(x) & 0<x<\ell
\end{array}
$$

where r is a constant. Write down a series expansion for the following cases

$$
\text { 1. } 0<r<\frac{2 \pi c}{\ell}
$$

2. $\frac{2 \pi c}{\ell}<r<\frac{4 \pi c}{\ell}$

You may assume that the initial conditions can be represented using an appropriate Fourier series.

Question 6 Solve the following problems:

1. $u_{t t}=c^{2} u_{x x}, u(x, 0)=e^{x}, u_{t}(x, 0)=\sin x$
2. $u_{t t}=c^{2} u_{x x}, u(x, 0)=\log \left(1+x^{2}\right), u_{t}(x, 0)=4+x$

Question 7 The midpoint of a piano string of tension T, density ρ and length ℓ is hit by a hammer whose head diameter is $2 a$. A flea is sitting at a distance $\ell / 4$ from one end (Assume that $a<\ell / 4$). How long does it take for the disturbance to reach the flea?

Question 8 Let $u(x, 0)=\phi(x)=0$ (initial position) and $u_{t}(x, 0)=\psi(x)=1$ (initial velocity) for $|x| \geq a$. Sketch the string profile (u versus x) ar each of the successive instants $t=a / 2 c, a / c, 3 a / 2 c, 2 a / c$ and $5 a / c$ where c is the wave speed

$$
u_{t t}=c^{2} u_{x x}
$$

[Hint: Calculate

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s=\frac{1}{2 c}[\text { length of }(x-c t, x+c t) \cap(-a, a)]
$$

Then $u(x, a / 2 c)=(1 / 2 c)$ (length of $(x-a / 2, x+a / 2) \cap(-a, a))$. This takes on different values for $|x|<a / 2$, for $a / 2<x<3 a / 2$, and for $x>3 a / 2$. Continue in this manner for each case.]

Question 9 In question 8, find the greatest displacement, $\max _{x} u(x, t)$ as a function of t.

Question 10 A spherical wave is a solution of the three dimensional wave equation of the form $u(r, t)$, where r is the distance to the origin (the spherical coordinate). The wave equation then takes the form

$$
u_{t t}=c^{2}\left(u_{r r}+\frac{2}{r} u_{r}\right), \quad \text { spherical wave equation }
$$

(a) Change variables $v=r u$ to get the equation for $v: v_{t t}=c^{2} v_{r r}$
(b) Solve for v using

$$
u(x, t)=f(x+c t)+g(x-c t)
$$

and thereby solve the spherical wave equation.
(c) Use d'Alembert's decomposition

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
$$

where $u(x, 0)=\phi(x), u_{t}(x, 0) \psi(x)$ to solve the wave equation with initial conditions $\phi(r)$ and $\psi(r)$. Taking $\phi(r)$ and $\psi(r)$ to be even functions of r

Question 11 Solve the problem

$$
\left\{\begin{array}{l}
u_{x x}-3 u_{x t}-4 u_{t t}=0 \\
u(x, 0)=x^{2} \\
u_{t}(x, 0)=e^{x}
\end{array}\right.
$$

[Hint: Factor the operator as we did for the wave equation]

References

[1] Kenneth S. Miller, Partial Differential Equations in Engineering Problems, Dover Publications inc. 2020.
[2] Walter A. Strauss, Partial Differential Equations An Introduction, John Wiley and Sons Ltd, 2008
[3] Sandro Salsa, Partial Differential Equations in Action, From Modelling to Theory, Springer, 2016.
[4] Lawrence C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, 2010.

