MATH-UA 9263 - Partial Differential Equations Recitation 9: Wave equation (part II)

Augustin Cosse

January 2022

Question 1 The chord of a guitar of length L is plucked at its middle point and then released. Write the mathematical model which governs the vibrations and solve it. Compute the energy E(t).

Question 2 Solve the problem

$$\begin{cases} u_{tt} - u_{xx} = 0, & 0 < x < 1, t > 0 \\ u(x,0) = u_t(x,0) = 0 & 0 \le x \le 1 \\ u_x(0,t) = 1, u(1,t) = 0 & t \ge 0 \end{cases}$$

Question 3 Solve the problem

$$\begin{cases} u_{tt} - u_{xx} = g(t)\sin x & 0 < x < \pi, t > 0 \\ u(x,0) = u_t(x,0) = 0 & 0 \le x \le \pi \\ u(0,t) = u(\pi,t) = 0 & t \ge 0 \end{cases}$$

Question 4 (Equipartition of energy) . Let u = u(x,t) be the solution of the global Cauchy problem for the equation $u_{tt} - cu_{xx} = 0$ with initial data $u(x,0) = g(x), u_t(x,0) = h(x)$. Assume that g and h are smooth functions with compact support contained in the interval (a,b). Show that there exists T such that, for $t \geq T$,

$$E_{cin}(t) = E_{pot}(t)$$

Question 5 Consider waves in a resistant medium which satisfies the following PDE

$$u_{tt} = c^2 u_{xx} - r u_t \quad 0 < x < \ell$$

$$u(0,t) = u(\ell,t) = 0, \quad \forall t > 0$$

$$u(x,0) = \phi(x) \quad 0 < x < \ell$$

$$u_t(x,0) = \psi(x) \quad 0 < x < \ell$$

where r is a constant. Write down a series expansion for the following cases

1. $0 < r < \frac{2\pi c}{\ell}$

2. $\frac{2\pi c}{\ell} < r < \frac{4\pi c}{\ell}$

You may assume that the initial conditions can be represented using an appropriate Fourier series.

Question 6 Solve the following problems:

- 1. $u_{tt} = c^2 u_{xx}, \ u(x,0) = e^x, \ u_t(x,0) = \sin x$
- 2. $u_{tt} = c^2 u_{xx}, u(x,0) = \log(1+x^2), u_t(x,0) = 4+x$

Question 7 The midpoint of a piano string of tension T, density ρ and length ℓ is hit by a hammer whose head diameter is 2a. A flea is sitting at a distance $\ell/4$ from one end (Assume that $a < \ell/4$). How long does it take for the disturbance to reach the flea?

Question 8 Let $u(x,0) = \phi(x) = 0$ (initial position) and $u_t(x,0) = \psi(x) = 1$ (initial velocity) for $|x| \ge a$. Sketch the string profile (u versus x) ar each of the successive instants t = a/2c, a/c, 3a/2c, 2a/c and 5a/c where c is the wave speed

$$u_{tt} = c^2 u_{xx}$$

[Hint: Calculate

$$u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds = \frac{1}{2c} \left[\text{length of}(x-ct,x+ct) \cap (-a,a) \right]$$

Then u(x, a/2c) = (1/2c) (length of $(x - a/2, x + a/2) \cap (-a, a)$). This takes on different values for |x| < a/2, for a/2 < x < 3a/2, and for x > 3a/2. Continue in this manner for each case.]

Question 9 In question 8, find the greatest displacement, $\max_{x} u(x,t)$ as a function of t.

Question 10 A spherical wave is a solution of the three dimensional wave equation of the form u(r,t), where r is the distance to the origin (the spherical coordinate). The wave equation then takes the form

$$u_{tt} = c^2 \left(u_{rr} + \frac{2}{r} u_r \right), \quad spherical \ wave \ equation$$

(a) Change variables v = ru to get the equation for $v: v_{tt} = c^2 v_{rr}$

(b) Solve for v using

$$u(x,t) = f(x+ct) + g(x-ct)$$

and thereby solve the spherical wave equation.

(c) Use d'Alembert's decomposition

$$u(x,t) = \frac{1}{2} \left[\phi(x+ct) + \phi(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds$$

where $u(x,0) = \phi(x), u_t(x,0)\psi(x)$ to solve the wave equation with initial conditions $\phi(r)$ and $\psi(r)$. Taking $\phi(r)$ and $\psi(r)$ to be even functions of r

Question 11 Solve the problem

$$\begin{cases} u_{xx} - 3u_{xt} - 4u_{tt} = 0\\ u(x,0) = x^2\\ u_t(x,0) = e^x \end{cases}$$

[Hint: Factor the operator as we did for the wave equation]

References

- [1] Kenneth S. Miller, *Partial Differential Equations in Engineering Problems*, Dover Publications inc. 2020.
- [2] Walter A. Strauss, Partial Differential Equations An Introduction, John Wiley and Sons Ltd, 2008
- [3] Sandro Salsa, Partial Differential Equations in Action, From Modelling to Theory, Springer, 2016.
- [4] Lawrence C. Evans, *Partial Differential Equations*, Graduate Studies in Mathematics, Vol. 19, 2010.