Examen Master MISC - Optimisation des systèmes de l'ingénieur Rattrapage ULCO/EILCO

Juin 2024

Nom:			
Prénom :			

Total: 30 points Durée: 2h

Instructions générales: L'examen comprend 2 parties (Chacune de ces parties reprenant différentes sous-questions). Vous êtes libres de rédiger vos réponses sur des pages supplémentaires en veillant toutefois à bien indiquer le numéro de chaque question. Une fois l'examen terminé, Assurez vous de bien écrire votre nom (de façon lisible) sur chacune des pages. Répondez à un maximum de questions, en commençant par les questions qui vous semblent les plus abordables.

Question 1 (16pts)

1. [5pts] Indiquer si les affirmations suivantes sont vraies ou fausses

Vrai / Faux	Dans un programme d'optimisation linéaire de la forme min $c^T x$ s.t. $Ax = b$, $x \ge 0$,
	pour qu'il existe une unique solution la matrice des contraintes ${m A}$ doit toujours être carrée
Vrai / Faux	Les nombres de contraintes du primal et du dual sont égaux
Vrai / Faux	Un disque est un ensemble convexe mais ce n'est pas un polytope
Vrai / Faux	Dans un programme d'optimisation linéaire, une solution optimale peut se trouver sur
	la frontière de l'ensemble admissible (i.e. du polytope P) sans être située sur un sommet.
Vrai / Faux	Dans un programme d'optimisation linéaire défini sur m contraintes et n variables,
	une solution de base admissible s'obtient en fixant m variables à zéro et en résolvant
	$le\ syst\`eme\ r\'esultant\ sur\ les\ n-m\ variables\ restantes.$
Vrai / Faux	Le dual d'un programme d'optimisation linéaire a toujours la même valeur que le primal
Vrai / Faux	Lors de l'utilisation de la méthode grand M, si les coefficients du vecteur de coût réduit
	correspondant aux variables d'écart ne sont pas nuls dans le dernier tableau de simplexe,
	c'est que le problème de départ n'admettait pas de solution admissible
Vrai / Faux	La solution optimale d'un programme d'optimisation linéaire est toujours entière lorsque
	les coefficients de la fonction coût et des contraintes sont entiers.

2. [7pts] On considère le problème suivant:

$$\max x_{2} + 10x_{1}$$

$$s.t. \quad x_{2} \leq x_{1} + 3$$

$$x_{2} \leq -\frac{1}{2}x_{1} + \frac{15}{2}$$

$$x_{2} \geq -8 + 2x_{1}$$

$$x_{2} \geq 3 - 3x_{1}$$

$$x_{1}, x_{2} \geq 0$$
(P)

- (a) [2pts] Représenter l'ensemble admissible.
- (b) [2pts] Résoudre le problème de manière graphique (donner la solution optimale).
- $(c) \ [1pts] \ \textit{Quelles sont les contraintes actives/inactives? Justifier}$
- (d) [2pts] Donner (D) le dual de (P)
- 3. [4pts] Un ouvrier paysagiste dispose d'un montant de €200 pour planter des arbres et des arbustes afin d'aménager une surface de 1000 m². Pour chaque arbre à planter il prévoit d'utiliser 25 m² et pour chaque arbuste, il prévoit d'utiliser 10m². Planter un arbre coûte €2 et planter un abuste coûte €5. Donner le problème linéaire à résoudre de façon à ce que l'ouvrier puisse savoir quel est le nombre maximum de plantes (arbres + arbustes) qu'il peut acheter.

Question 2 (14pts)

1. [5pts] Indiquer si les affirmations suivantes sont vraies ou fausses

Vrai / Faux Mathématiquement, un sommet d'un polytope P est défini comme un point auquel il existe une fonction linéaire qui atteint son unique maximum sur P en ce point Vrai / Faux Un polytope convexe est la combinaison convexe de ses points extrêmes Vrai / Faux On considère un problème d'optimisation linéaire correspondant à la minimisation d'une fonction linéaire sur un polytope P. Si le polytope P contient au moins un point extrême et si le problème admet une solution optimale, alors le probème admet une solution optimale qui est un point extrême. Vrai / Faux La présence d'une variable d'écart non nulle dans le tableau de simplexe final indique que le problème d'origine n'admet pas de solution Vrai / Faux Le programme d'optimisation linéaire min $2|x_1| + x_2$ s.t. $x_1 + x_2 \ge 4$ peut toujours être réécrit sous la forme min $2z_1 + x_2$ s.t. $x_1 + x_2 \ge 4$, $x_1 \le z_1$, $x_1 \ge -z_1$ Vrai / Faux Si un polytope ne contient pas de point extrême, alors il contient nécessairement une droite Vrai / Faux La méthode du simplexe peut être utilisée telle quelle pour résoudre un problème d'optimisation linéaire sur les entiers

Vrai / Faux Dans la méthode du simplexe, une variable dont le coût réduit est positif ne rentrera jamais dans la base si il s'agit d'un problème de maximisation.

2. [2pts] On dispose du tableau de simplexe suivant (minimisation). Retrouver, à partir du tableau, le problème de départ.

3. [3pts] Soit $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. Formuler le problème suivant sous forme d'un programme d'optimisation linéaire:

$$\min_{\boldsymbol{x}} \sum_{i=1}^{m} \max \left\{ 0, \boldsymbol{a}_{i}^{T} \boldsymbol{x} + b_{i} \right\}$$
 (2)

4. [4pts] Résoudre le problème suivant en utilisant la méthode du simplexe (Veiller à bien détailler chaque étape)