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Question 1 Show that a polytope defined by a finite number of linear inequalities is
a convex set.

Question 2 Show that the disk
{
(x, y) | x2 + y2 ≤ r2

}
is a convex set. How about

the n-dimensional ℓ2 ball
{
x ∈ Rn |

∑n
i=1 x

2
i ≤ R2

}
Question 3 Extend the previous question by showing that every ball B(a, r) = {x ∈ Rn | ∥x− a∥ ≤ r}
where a ∈ Rn and r ≥ 0 is convex.
Hint: you might want to use the fact that a norm, ∥ · ∥, is a real valued function that
satisfies the following properties:

• Subadditivity/Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

• Absolute homogeneity ∥αx∥ = |α|∥x∥ for any scalar α

• Positive definiteness: if ∥x∥ = 0 then x = 0

Question 4 Let S =
{
(x, y, z) | z ≥ x2 + y2

}
⊂ R3. Sketch the set and verify that it

is a convex set. What are the extreme points and vertices of S?

Question 5 Is the set defined below convex?
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If so, indicate the extreme points and vertices of the set. Are there extreme points
that are not vertices? if yes, indicate those on the set.

Question 6 Find the convex hull of the set
{
(x, y) ∈ R2 | |xy| ≤ 1

}
Question 7 Consider the point sets given in Fig. 1. For each set, draw the convex
hull of the set.
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Figure 1: Feasible sets used in Question 7.

Question 8 ([2]) Let ci ≥ 0 be non negative constants. Write the following problem
as a linear program:

min
x

n∑
i=1

ci|xi|

Ax ≥ b

(1)

Question 9 ([2]) Another approach when considering absolute values is to introduce
the decomposition xi = x+

i + x−
i . That is to say, if we are given the problem

min

n∑
i=1

ci|xi|

Ax ≥ b

(2)
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One can rewrite this problem as

min

n∑
i=1

ci(x
+
i + x−

i )

Ax+ −Ax− ≥ b

x+
i , x

−
i ≥ 0

(3)

where x+ = [x+
1 , . . . , x

+
n ] and x− = [x−

1 , . . . , x
−
n ]. Formulation (3) only makes sense

if either x+
i or x−

i is equal to zero (can you see why?). Show that for the linear
program (3), the optimal solution must always satisfy x+

i = 0 or x−
i = 0 for every i.

Question 10 ([2]) In learning, we are often given n data pairs {xi, ti} where xi ∈
Rn and we are interested in building a linear model of the form βTxi = ti where β
is the vector of parameters to be estimated. One possible approach consists in solving
the following problem

min
β

max
i

∣∣ti − xT
i β

∣∣ (4)

Write the linear formulation for this problem.

Question 11 A non negative function f is called log-convex if log(f) is itself convex.
Show that the function e|x|

p

is log-convex when p ≥ 1.

Question 12 ([3]) Let x0, . . . ,xK ∈ Rn be distinct. Consider the set of points that
are close to xk than to the other xi:

V = {x ∈ Rn | ∥x− xk∥2 ≤ ∥x− xi∥2, i ̸= k}

Show that V is a polyhedron. Express V in the form V = {x|Ax ≤ b}

Question 13 Consider the problem

min
x

2x1 + 3|x2 − 9| (5)

s.t. |x1|+ |x2 + 3| ≤ 6 (6)

Write this problem as a linear program.

Question 14 Let C1 and C2 be two convex sets. Show that the set

C1 + C2 = {x = x1 + x2|x1 ∈ C1,x2 ∈ C2} (7)

is convex

Question 15 Consider the following polyhedron in standard form

P =
{
x ∈ R3 | Ax = b,x ≥ 0

}
, where A =

[
1 2 1
1 −1 2

]
, b =

[
3
1

]
(8)

How many extreme points does P have?
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Question 16 ([4]) A collection of points x1, . . . ,xm ∈ Rn are called affinely inde-
pendent if for λ1, . . . , λm ∈ R, with

∑m
i=1 λi = 0, it follows that whenever

∑m
i=1 λixi =

0, we must have λ1 = . . . = λm = 0. Assume that x1, . . . ,xk ∈ Rn are such that each
x ∈ conv {x1, . . . ,xk} is a unique convex combination of the x1, . . . ,xk. Show that
x1, . . . ,xk are affinely independent.

Question 17 ([4]) For a set A ⊂ Rn, the polar of A, A◦ can be defined as

A◦ = {x ∈ Rn|⟨x,y⟩ ≤ 1, for all y ∈ A} (9)

Show that A◦ is convex. Then show that if P is a polytope then P ◦ is a polyhedral
set.
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