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Question 1 Show that a polytope defined by a finite number of linear inequalities is
a convex set.

Question 2 Show that the disk {(:c,y) |22 +92 < r2} is a convex set. How about
the n-dimensional (3 ball {x € R™ | Y7 | 2? < R?}

Question 3 Extend the previous question by showing that every ball B(a,r) = {x € R" | ||z — a| < r}
where a € R™ and r > 0 is convez.

Hint: you might want to use the fact that a norm, || - ||, is a real valued function that

satisfies the following properties:

o Subadditivity/Triangle inequality: ||z + yl|| < ||z| + ||y
o Absolute homogeneity ||ax| = |al|||x| for any scalar «

e Positive definiteness: if ||x|| =0 then =0

Question 4 Let S = {(x, y,2) | 2> 2%+ y2} C R3. Sketch the set and verify that it
is a convex set. What are the extreme points and vertices of S?

Question 5 Is the set defined below convexr?
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If so, indicate the extreme points and vertices of the set. Are there extreme points
that are not vertices? if yes, indicate those on the set.

Question 6 Find the convex hull of the set {(z,y) € R? | |zy| < 1}

Question 7 Consider the point sets given in Fig. 1. For each set, draw the convex

hull of the set.
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Figure 1: Feasible sets used in Question 7.

Question 8 ([2]) Let ¢; > 0 be non negative constants. Write the following problem
as a linear program:

min cilx;
2 el 0

Ax >b

Question 9 ([2]) Another approach when considering absolute values is to introduce
the decomposition x; = xj + x; . That is to say, if we are given the problem

n
minz Cb|l‘l|
i=1

Az >b



One can rewrite this problem as

minz cilzf +a7)
i=1
AxT — Az~ >b

x z; >0
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(3)

where xt = [z ,...,2}] and x= = [z],...,2;]. Formulation (3) only makes sense
if either asj' or x; is equal to zero (can you see why?). Show that for the linear
program (3), the optimal solution must always satisfy xf =0 orz; =0 for every i.

Question 10 ([2]) In learning, we are often given n data pairs {x;,t;} where x; €
R™ and we are interested in building a linear model of the form BTx; = t; where 3
is the vector of parameters to be estimated. One possible approach consists in solving
the following problem

mﬁin miax }ti - :clT,3| (4)

Write the linear formulation for this problem.

Question 11 A non negative function f is called log-convez if log(f) is itself conver.
Show that the function el*" is log-convex when p > 1.

Question 12 ([3]) Let x,...,xx € R™ be distinct. Consider the set of points that
are close to xy, than to the other x;:

V=A{z cR"| [l —xplls <[l —zifl2,i # k}
Show that V is a polyhedron. Express V in the form V = {x|Az < b}

Question 13 Consider the problem
min 2:21 + 3|ZZ?2 - 9| (5)
st |z 4|z +3] <6 (6)

Write this problem as a linear program.

Question 14 Let C; and Cy be two convex sets. Show that the set
Cl+02:{w:w1+$2|$1601,:132602} (7)

1S convex

Question 15 Consider the following polyhedron in standard form

. 3 . |1 2 1 .
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How many extreme points does P have?



Question 16 ([4]) A collection of points xy,..., &, € R™ are called affinely inde-
pendent if for A1, ..., Am € R, with > " | X; = 0, it follows that whenever Y ;- \ix; =

0, we must have A\ = ... = \,,, = 0. Assume that x1,...,x, € R™ are such that each
x € conv{xy,..., Tk} 18 a unique conver combination of the xi,...,x. Show that
xy,...,x, are affinely independent.

Question 17 ([4]) For a set A C R", the polar of A, A° can be defined as
A° ={z e R"|(z,y) <1, forally € A} (9)

Show that A° is convex. Then show that if P is a polytope then P° is a polyhedral
set.
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